Переключиться на мобильную версию

В физике элементарных частиц произошло новое невероятное достижение

Физики впервые обнаружили электронные орбиты в экситонной квазичастице.
Распределение электронных вероятностей экситона показывает, где электрон наиболее вероятно находится
Распределение электронных вероятностей экситона показывает, где электрон наиболее вероятно находится
OIST

Впервые ученым удалось отобразить орбиты электронов внутри квазичастицы, известной как экситон, - результат, который позволил им, наконец, измерить волновую функцию экситона, описывающую пространственное распределение импульса электрона внутри квазичастицы.

К этому достижению стремятся с момента открытия экситонов в 1930-х годах, и хотя поначалу это может показаться абстрактным, оно может помочь в разработке различных технологий, включая приложения квантовых технологий.

Читай также: Физики открыли новую экзотическую частицу

"Экситоны - действительно уникальные и интересные частицы; они электрически нейтральны, что означает, что они ведут себя в материалах совершенно иначе, чем другие частицы, такие как электроны. Их присутствие действительно может изменить способ реакции материала на свет", - сказал физик Майкл Ман из Окинавского института Отделение фемтосекундной спектроскопии науки и технологий (OIST) в Японии. "Эта работа приближает нас к полному пониманию природы экситонов".

Экситон - это не настоящая частица, а квазичастица - явление, которое возникает, когда коллективное поведение частиц заставляет их действовать подобно частицам. Экситоны возникают в полупроводниках, материалах, которые обладают большей проводимостью, чем изолятор, но их недостаточно, чтобы их можно было считать собственно проводниками.

Полупроводники полезны в электронике, поскольку они позволяют более точно контролировать поток электронов. Какими бы сложными ни были наблюдения, экситоны играют в этих материалах важную роль.

Читай также: Новая аномалия нарушила Стандартную модель физики

Экситоны могут образовываться, когда полупроводник поглощает фотон (частицу света), который поднимает отрицательно заряженные электроны на более высокий энергетический уровень; то есть фотон "возбуждает" электрон, который оставляет положительно заряженную щель, называемую электронной дыркой. Отрицательный электрон и его положительная дырка связываются вместе на общей орбите; экситон - это вращающаяся электронно-дырочная пара.

Но экситоны очень недолговечны и очень хрупки, так как электрон и его дырка могут снова собраться вместе всего за доли секунды, поэтому на самом деле увидеть их - нелегкий подвиг.

"Ученые впервые обнаружили экситоны около 90 лет назад", - сказал физик Кешав Дани из отделения фемтосекундной спектроскопии в OIST.

"Но до недавнего времени можно было получить доступ только к оптическим сигнатурам экситонов - например, к свету, испускаемому экситоном при гашении. Другие аспекты их природы, такие как их импульс, и то, как электрон и дырка вращаются по орбите. другое, может быть описано только теоретически".

Это проблема, над решением которой работают исследователи. В декабре прошлого года они опубликовали метод прямого наблюдения импульсов электронов. Теперь они использовали этот метод. И это сработало.

Читай также: Физики открыли невидимый тетранейтрон

В этом методе используется двумерный полупроводниковый материал, называемый диселенидом вольфрама, помещенный в вакуумную камеру, охлаждаемую до температуры 90 Кельвина (-183,15 градусов Цельсия). Эту температуру необходимо поддерживать, чтобы экситоны не перегревались.

Лазерный импульс создает в этом материале экситоны; второй лазер сверхвысокой энергии затем полностью выбрасывает электроны в пустоту вакуумной камеры, которая контролируется электронным микроскопом.

Этот прибор измеряет скорости и траектории электронов, которые затем можно использовать для определения начальных орбит частиц в точке, в которой они были выброшены из своих экситонов.

С некоторыми изменениями исследование группы могло бы стать огромным шагом вперед в исследованиях экситонов. Его можно использовать для измерения волновой функции различных состояний и конфигураций экситонов, а также для исследования физики экситонов различных полупроводниковых материалов и систем.

Напомним, ранее сообщалось, что физики достигли нового предела скорости перемещения квантовой информации.

Хотите знать важные и актуальные новости раньше всех? Подписывайтесь на Bigmir)net в Facebook и Telegram.

 
Комментариев (4)
Оставляя комментарий, пожалуйста, помните о том, что содержание и тон Вашего сообщения могут задеть чувства реальных людей, непосредственно или косвенно имеющих отношение к данной новости. Пользователи, которые нарушают эти правила грубо или систематически, будут заблокированы.
Полная версия правил
Осталось 300 символов
Отсортировать по дате Вниз
nikolaroman1952    22.04.2021, 16:47
Оценка:  +1
nikolaroman1952
Экситон, фонон, музон, аксон - да когда вы остановитесь, умники?
Иван  (аноним)  22.04.2021, 16:34
Оценка:  -1
Иван
Эта наверное наши расийские учоные изобрили.Па другому быть ни можыт.
гость  (аноним)  22.04.2021, 14:33
Оценка:  +3
гость
Ниxyя не понял. Но очень интересно
Vixerunt    22.04.2021, 15:16
Оценка:  +23
Vixerunt
там что б понять надо в универе на физ-факе года 3 учиться и то не факт что осилишь. Там физика твёрдого тела граничит с физикой полу_проводников и квантовой физикой что само по себе не легко.
Реклама
Мы в соцсетях
Реклама
Реклама
Для удобства пользования сайтом используются Cookies. Подробнее здесь